Rolling Asynchronous Interchain Liquidity
Settlement

Chris Whinfrey
April 2025

Abstract

This paper introduces Rails, a novel protocol designed to facilitate
high-efficiency trustless token transfers across blockchain networks. Ex-
isting trustless bridge protocols rely on delayed message settlements for
each transfer, leading to high capital requirements and pushing proto-
cols toward less secure and more centralized messaging solutions. Rails
enables direct peer-to-peer settlement, circumventing message times and
significantly improving capital efficiency. An open network of bonders pro-
vides faster-than-finality execution on top of the peer-to-peer settlement
mechanism.

Rails achieves the best-case capital efficiency profile currently offered
only by trusted bridges. By optimizing liquidity settlement dynamics,
Rails reduces costs and lowers barriers for cross-chain liquidity, fostering
a more interconnected Ethereum ecosystem.

1 Introduction

While rollups have gained traction as Ethereum’s predominant scaling solution,
interoperability between rollups remains a core challenge. Interoperability can
be divided into two categories: messaging — the ability for one chain to com-
municate with another; and asset maneuverability — the ability to move an
asset from one chain to another. While advancements in cross-chain messaging,
such as state proofs and on-chain light clients, are improving communication,
liquidity fragmentation persists.

Asset maneuverability is straightforward for homogeneous rollups that share
identical security properties and trustless messaging. Tokens can be transferred
using a simple burn-and-mint bridge mechanism without compounding secu-
rity risks. Bridging assets across heterogeneous rollups, however, presents a
fundamental problem. Each heterogeneous rollup operates within a distinct se-
curity framework, making maneuverability of trustless assets via burn-and-mint
mechanisms impossible without inheriting the cumulative security risks of each
connected rollup.

Robust liquidity bridges are necessary infrastructure for enabling token ma-
neuverability across rollups without compromising on security. Rails addresses

this need by optimizing capital efficiency and mitigating the security risks in-
herent to existing bridge models.

2 Limitations of Existing Bridges

Current bridge solutions are limited by their capital efficiency, risk isolation,
and rebalancing mechanics.

Existing bridge solutions are message-settled — that is, funds are locked
for the time it takes for a message to be passed from chain A to chain B.
Optimistic rollups enforce trustless message times of approximately seven days,
while zk-rollup message times depend on L1 checkpointing intervals ranging
from 30 minutes to 12 hours. Messages can be sped up using a more aggressive
optimistic window, but shorter windows compromise on security. To overcome
these capital inefficiencies without sacrificing security, liquidity settlement must
be decoupled from the underlying message settlement.

Some existing bridge solutions also lack risk isolation for external liquidity
providers. Liquidity providers for these solutions are exposed to the risks of all
chains in the network with risks increasing as the network grows. A maximally
secure, scalable bridge solution must allow external liquidity providers to be
exposed only to the chains they are on and keep them isolated from the other
chains in the network.

Existing solutions take various suboptimal approaches to asset rebalancing.
Some solutions externalize asset rebalancing to arbitrageurs but rely on capital-
intensive liquidity pools. Other solutions require active liquidity providers to
individually rebalance liquidity themselves leading to inefficiencies and central-
ization around the largest participants. An ideal bridge solution externalizes
the rebalancing of assets without relying on large liquidity pools.

3 Rails

Rails (Rolling asynchronous interchain liquidity settlement) is a novel bridge
protocol that allows users to settle directly with one another. This separates
the settlement of cross-chain transfers from the underlying message settlement,
dramatically improving capital efficiency.

In Rails, each transfer includes a state attestation containing information
about prior transfers from the destination chain, allowing the protocol to use
liquidity from the new transfer to free up prior transfers on a rolling basis. A
virtual automated market maker (AMM) dynamically adjusts rates be-
tween chains to maintain balanced liquidity flows without requiring external
liquidity provisioning. Transfers generate claims at the destination, which are
released in first-in-first-out (FIFO) order. Additionally, an open network of
bonders/solvers can facilitate faster-than-finality execution for immediate set-
tlement needs. Each Rails path connects two chains, and multiple paths can
be combined to route transfers efficiently to their destination. This construc-

tion enables a trustless and highly efficient method of exchanging assets across
chains.

3.1 State Attestations

State attestations are the core innovation enabling Rails’s capital efficiency.
When transfers are initiated, liquidity is deposited at the source along with
a state attestation referencing prior transfers from the destination. A wvalid
transfer must include a valid state attestation or it cannot be withdrawn at the
destination where the state attestation is validated. This allows Rails to leverage
the deposits of transfers on the source chain to free up claims of transfers that
came from the destination chain.

Chain A Chain B

Transfers Claims Claims Transfers

Claim 59 - 0xfbOe

Transfer 59 - OxfbOe
to

/| amount out

2) Validation

to
7| amount out

1) State ;
attestation

Transfer 99 - 0x0b92 Claim 99 - 0x0b92
to S 5| to

amount out amount out
attested claim id * attested claim id *

Figure 1: Each transfer attests to claims of transfers from the destination. State
attestations are validated at the destination or the claim cannot be withdrawn.

Each state attestation references a single claim in the bridge’s state but can
be applied to free any previous claim. This is essential because claims are freed
up in first-in-first-out order.

To achieve this, claims form a state chain where each claim’s unique iden-
tifier (claim id) is the hash of the claim data (i.e. to, amount out, etc.) and
the previous claim id. An attestation to any given claim id is also attesting to
all previous claim ids, because any change in the state chain would result in a
different claim id for the attested claim.

Chain A
Transfers Claims

—_—
Claim 56 - 0xe957

to

amount out

previous claim id

Claim 57 - 0x04ca
to

2) Claim | amount out
freed previous claim id <

Claim 58 - 0x9¢10

to

amount out

previous claim id «--

1) State v

attestation

Claim 59 - 0xfbOe
Transfer 99 - 0x0b92 A to

to

amount out

attested claim id ~

amount out
previous claim id -

Figure 2: Transfer 99 attests to claim 59 which causes claim 57, the earliest
unfreed claim, to be freed.

The claim chain is confirmed in two steps — first by state attestations which
allow claims to be withdrawn and later by message settlement which finalizes
the claim chain at a given claim.

3.2 Flow Balancing

Because cross-chain transfers in one direction are used to free up transfers com-
ing from the other direction, it’s important that these flows remain balanced
over time. Rails sets a dynamic rate between chains using a virtual AMM model,
requiring no external liquidity.

The virtual AMM curve is set upon initialization of a new path, with a trade-
off between liquidity efficiency and slippage. A shallower curve, representing a
larger pool of virtual liquidity, will result in lower slippage for transfers but
higher flow imbalances leading to longer queues. Conversely, a steeper curve
will result in shorter queues but more slippage. A properly set AMM curve
should take into account this tradeoff to strike a balance for users. Multiple
paths, utilizing different curves, may be instantiated between two chains for the
same asset to provide the appropriate tradeoffs for different sizes of transfers.

The virtual AMM does not require liquidity providers because the outputs
of the AMM are token claims and not liquid tokens. Any curve may be set
representing any amount of virtual liquidity. This removes the high barrier of
bootstrapping liquidity required by current bridges. Additionally, no AMM fee
is needed to pay liquidity providers further reducing costs.

3.3 Fast Execution

To address user demand for near-instant settlement, Rails incorporates an open
network of bonders/solvers that enable fast execution on top of the peer-to-
peer settlement mechanism. These participants provide liquidity for transfers
that require immediate fulfillment in exchange for a small fee. Bonders can
complete bridge transfers faster than source transactions reach finality using a
novel mechanism called contingent transactions. (First implemented in Hop
Protocol v1, August 2023.)

Contingent transactions allow bonders to specify an L1 blockhash, ensuring
that the bonded transaction only executes if the referenced block is valid. By
referencing the block of the source transaction, the bonder can guarantee that
either the source transaction is confirmed or the bonder’s transaction is reverted,
preventing loss of funds. Contingent transactions can be chained together for
transfers routed through multiple chains, guaranteeing that subsequent transac-
tions are reverted if any previous transaction in the transaction chain is forked
out.

3.4 Routing Cross-Chain Transfers

Rails connects chains through paths, where transfers in one direction free up
claims from transfers in the other direction and vice versa. The more volume
that is directed through a path, the faster the claims are freed up, driving path
efficiency. While it is possible to establish direct paths between all chains, doing
so would fragment cross-chain volume and lead to longer queue times.

Transfers can be routed through multiple paths on their way to their des-
tinations, reducing the overall number of paths required to connect supported
chains. This enables alternative graphs of connected chains with far fewer paths
such as the hub-and-spoke model. For example, directly connecting 1,000 chains
would necessitate 499,500 paths, whereas a hub-and-spoke model requires only
1,000 paths, greatly improving capital efficiency.

o}

N
2

O

All-to-all Hub and spoke

Figure 3: Routing through a hub chain dramatically reduces the number of
paths required.

4 Interacting With Rails

For end users, interacting with Rails is no different than interacting with other
bridge protocols whether it is a traditional bridge, intent, or chain abstraction
experience. Wallets, frontends, or backend infrastructure can construct Rails
transfers with state attestations in their current transaction creation processes
with two simple RPC calls. First, the latest claim is fetched from the Rails con-
tract. This claim is then verified with a second call to the destination contract.
After verification, it can be safely included in the user’s transaction as a state
attestation.

Once support for a chain is added to the Rails network, paths for any token
can be added permissionlessly. Since there is no need to bootstrap external
liquidity, new paths can be used immediately after creation.

Intent frameworks can use Rails for efficient settlement. Current solver
networks settling cross-chain intents require solvers to fragment their liquid-
ity across many supported chains and receive payment on the opposite chain
from where the intent was executed [1]. This means that all solvers must rebal-
ance their own liquidity on top of solver duties. Rails allows solvers to settle
in place, enabling them to focus on individual chains instead of rebalancing as-
sets. After executing an intent with Rails, solvers take immediate ownership of
a claim on the same chain. When the claim is freed, the liquidity can be used
again without any rebalancing required.

Chain abstraction experiences can also be built on top of Rails. Just like
any other bridge, Rails can be used in the background to move assets to the
destination where the primary transaction is being executed (e.g. bridge and
swap, bridge and deposit.)

5 Comparing Efficiency and Risk

Maximum throughput and attack surface area are two useful dimensions to
compare the capital efficiency and security of Rails to classic bridge designs
such as liquidity pool bridges, atomic swap bridges, and trusted bridges.

Both liquidity pool bridges (Hop Protocol v1, Connext, Across v1) and other
message-settled bridges (including ERC-7683 [2] or “Intent Bridge” implemen-
tations) require, at a minimum, all bridge volume to be locked for the dura-
tion of the message settlement. Liquidity pool bridges require passive liquidity
providers, but allow active liquidity providers to settle on the chain where the
funds were provided. Atomic swap bridges do not require passive liquidity
providers but active liquidity providers settle on the opposite chain from where
funds were provided and must manage the rebalancing of their liquidity indi-
vidually. Both of these bridge designs are limited in throughput by the message
time, during which liquidity is locked. Their maximum volume processed within
a given duration can be calculated as a function of the amount of liquidity and
the message time. Duration is assumed to be a multiple of message time.

MaxVolume = Duration * Liquidity/MessageTime

Trusted bridges have no such limitation since message times are near instant.
However, they must introduce a trusted intermediary greatly increasing the
attack surface area. Over two billion dollars have been stolen from trusted
bridges [3]. The reason security incidents have been so frequent and severe for
trusted bridges is simple; it’s much harder to secure active off-chain keys than it
is to secure an immutable onchain protocol. Despite this existential risk, trusted
bridges can process a virtually infinite amount of cross-chain volume in a given
duration (limited only by block times and sizes) because they lack the capital
lockup period of the message settlement required by current trustless bridge
designs.

Rails is fully trustless but achieves the best-case capital efficiency profile
currently only offered by trusted bridges. Each transfer sent frees up an equal
amount of locked liquidity in the system making each transfer’s net impact to
locked liquidity zero. An infinite amount of volume can be processed in a given
duration (limited only by block times and sizes) without the additional attack
surface area that trusted bridges expose.

6 Conclusion

Rails introduces a novel approach to cross-chain liquidity settlement that de-
couples bridge settlement from the underlying messaging protocol, significantly
improving capital efficiency without compromising on security. By leveraging
state attestations and a virtual AMM for flow balancing, Rails reduces costs and
lowers barriers for cross-chain liquidity. Furthermore, by incorporating an open
network of bonders, Rails achieves faster-than-finality execution for a best-in-
class user experience. As rollups continue to proliferate, Rails offers a scalable,
trust-minimized, and efficient solution for cross-chain liquidity settlement, cre-
ating a more user-friendly, unified Ethereum.

References
[1] Uniswap Labs. Uniswap labs and across propose stan-
dard for cross-chain intents. https://blog.uniswap.org/

uniswap-labs-and-across-propose-standard-for-cross-chain-intents,

2024.

[2] Nick Pai Mark Toda, Matt Rice. Erc-7683: Cross chain intents. https:
//eips.ethereum.org/EIPS/eip-7683, 2024.

[3] Chainalysis Team. Vulnerabilities in cross-chain bridge protocols
emerge as top security risk. https://www.chainalysis.com/blog/
cross-chain-bridge-hacks-2022, 2022.

